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The Vasicek interest rate model is a mathematical model that describes the evolution of the short rate of interest
over time. The short rate is the annualized interest rate at which an entity can borrow money for an infinitesimally
short period of time. Vasicek models the short rate as a Ornstein-Uhlenbeck process. An Ornstein-Uhlenbeck
process is a mean-reverting process where the short rate is allowed to incorporate random shocks but is pulled back
to it’s long-term mean whenever it moves away from it. Interest rates exhibit mean reversion, which is the tendency
for a stochastic process to return over time to a long-term mean. Vasicek’s stochastic differential equation that
defines the change in the short rate ru over the infinitesimally small time interval [u, u+ δu] is...

δru = λ (r∞ − ru) δu+ σ δWu (1)

When the short rate moves below its long-term mean r∞ the short rate drift becomes positive and the short rate is
pulled upward. When the short rate moves above its long-term mean the short rate drift becomes negative and the
short rate is pulled downward. The speed at which the drift is pulled upward of downward is given by the positive
valued parameter λ, which measures the speed of mean reversion. The greater the speed the faster the process
reverts toward the long-term mean. Random shocks are introduced via the variables σ, which is the annualized
short rate volatility, and δWu, which is the change in the driving Brownian motion over the infinitesimally short
time interval [u, u+ δu].

We will define the short rate at time t to be the short rate at time s (known) plus the sum of the changes in
the short rate over the time period [s, t] (random). Using Equation (1) above the equation for the random short
rate at time t as a function of the known short rate at time s is...

rt = rs +

t∫
s

δru ...where... t > s (2)

In this white paper we will develop the mathematics of the Vasicek short rate stochastic process. To that end we
will work through the following hypothetical problem...

Our Hypothetical Problem

We are tasked with pricing a zero coupon bond and for that task we need an expected short rate curve. Our
go-forward interest rate assumptions are as follows...

Description Symbol Value
Current short rate rs 0.04
Long-term short rate mean r∞ 0.09
Annualized short rate volatility σ 0.03
Mean reversion rate λ 0.35

Question 1: Graph the short rate curve (mean and variance) over the time interval [0, 10].

Question 2: What is the short rate mean and variance at the end of years 1 and 3?

Question 3: What is the correlation between the random short rates at the end of years 1 and 3?

Question 4: What is the probability that the random short rate at the end of year 3 will be negative?
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Short Rate Equation

We will define the function f(ru, u) to be a function of time u and the short rate of interest at time u. The equation
for the function f(ru, u) is...

f(ru, u) = Exp

{
λu

}
(ru − r∞) (3)

The derivatives of Equation (3) above with respect to time u and the short rate of interest at time u are...

δf(ru, u)

δu
= λExp

{
λu

}
(ru − r∞) ...and...

δf(ru, u)

δru
= Exp

{
λu

}
...and...

δ2f(ru, u)

δr2u
= 0 (4)

Per Ito’s Lemma, Equation (3) is once differentiable with respect to time u and twice differentiable with respect to
the stochastic short rate ru. Using a Taylor Series Expansion the equation for the change in f(ru, u) is...

δf(ru, u) =
δf(ru, u)

δu
δu+

δf(ru, u)

δru
δru +

1

2

δ2f(ru, u)

δr2u
δr2u (5)

Using the derivative calculations in Equation (4) above we can rewrite Equation (5) above as...

δf(ru, u) = λExp

{
λu

}
(ru − r∞) δu+ Exp

{
λu

}
δru (6)

Using Equation (1) above we can rewrite Equation (6) above as...

δf(ru, u) = λExp

{
λu

}
(ru − r∞) δu+ Exp

{
λu

}(
λ (r∞ − ru) δu+ σ δWu

)
= λExp

{
λu

}
(ru − r∞) δu+ λ (r∞ − ru) Exp

{
λu

}
δu+ σExp

{
λu

}
δWu

= λExp

{
λu

}
(ru − r∞) δu− λExp

{
λu

}
(ru − r∞) δu+ σExp

{
λu

}
δWu

= σExp

{
λu

}
δWu (7)

After integrating both sides of Equation (7) above we get...

t∫
s

δf(ru, u) =

t∫
s

σExp

{
λu

}
δWu (8)

Note that we can rewrite Equation (8) above as...

f(rt, t)− f(rs, s) = σ

t∫
s

Exp

{
λu

}
δWu (9)

Using Equation (9) above and rearranging terms we get...

f(rt, t) = f(rs, s) + σ

t∫
s

Exp

{
λu

}
δWu (10)
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Using Equations (3) and (10) above the equation for random short rate at time t as a function of the known
short-rate at time s is...

Exp

{
λ t

}
(rt − r∞) = Exp

{
λ s

}
(rs − r∞) + σ

t∫
s

Exp

{
λu

}
δWu

Exp

{
λ t

}
rt − Exp

{
λ t

}
r∞ = Exp

{
λ s

}
rs − Exp

{
λ s

}
r∞ + σ

t∫
s

Exp

{
λu

}
δWu

Exp

{
λ t

}
rt = Exp

{
λ s

}
rs + Exp

{
λ t

}
r∞ − Exp

{
λ s

}
r∞ + σ

t∫
s

Exp

{
λu

}
δWu

rt = Exp

{
− λ t

}(
Exp

{
λ s

}
rs + Exp

{
λ t

}
r∞ − Exp

{
λ s

}
r∞ + σ

t∫
s

Exp

{
λu

}
δWu

)

rt = r∞ + Exp

{
− λ (t− s)

}
(rs − r∞) + Exp

{
− λ t

}
σ

t∫
s

Exp

{
λu

}
δWu (11)

Short Rate Distribution

To make the calcuations that follow easier to handle we will make the following function definition...

µt = r∞ + Exp

{
− λ (t− s)

}
(rs − r∞) (12)

Using Equation (12) above we can rewrite short rate Equation (11) above as...

rt = µt + Exp

{
− λ t

}
σ

t∫
s

Exp

{
λu

}
δWu (13)

Using Equation (13) above the equation for the first moment of the distribution of the random short rate at time t
given the known short-rate at time s is...

E
[
rt

]
= E

[
µt + Exp

{
− λ t

}
σ

t∫
s

Exp

{
λu

}
δWu

]

= µt + Exp

{
− λ t

}
σ

t∫
s

Exp

{
λu

}
E
[
δWu

]

= r∞ + Exp

{
− λ (t− s)

}
(rs − r∞) (14)

The equation for the square of the random short rate at time t as a function of the known short rate at time s
(Equation (13) above) is...

r2t = µ2
t + 2µt Exp

{
− λ t

}
σ

t∫
s

Exp

{
λu

}
δWu + Exp

{
− 2λ t

}
σ2

t∫
s

t∫
s

Exp

{
λ (u+ v)

}
δWu δWv (15)
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Using Equation (15) above and Appendix Equations (38) and (45) below the equation for the second moment of
the distribution of the random short rate is...

E
[
r2t

]
= E

[
µ2
t + 2µt Exp

{
− λ t

}
σ

t∫
s

Exp

{
λu

}
δWu + Exp

{
− 2λ t

}
σ2

t∫
s

t∫
s

Exp

{
λ (u+ v)

}
δWu δWv

]

= µ2
t + 2µt Exp

{
− λ t

}
σ

t∫
s

Exp

{
λu

}
E
[
δWu

]
+ Exp

{
− 2λ t

}
σ2 E

[ t∫
s

t∫
s

Exp

{
λ (u+ v)

}
δWu δWv

]

= µ2
t +

1

2
σ2

(
1− Exp

{
− 2λ (t− s)

})
λ−1 (16)

Using Equation (14) above the mean of the short rate at time t given the short rate at time s is...

mean = E
[
rt

]
= r∞ + Exp

{
− λ (t− s)

}(
rs − r∞

)
(17)

Using Equations (12), (16) and (17) above the variance of the short rate at time t given the short rate at time s
is...

variance = E
[
r2t

]
−
(
E
[
rt

])2

= µ2
t +

1

2
σ2

(
1− Exp

{
− 2λ (t− s)

})
λ−1 − µ2

t

=
1

2
σ2

(
1− Exp

{
− 2λ (t− s)

})
λ−1 (18)

Short Rate Covariance

Imagine that we are currently sitting at time s and that there are two future time periods t and u. Given that rs
is the short rate at time s (known) the equation for the short rates at time t (random) and at time u (random) can
be written as...

rt = rs +

t∫
s

δrx ...and... ru = rs +

u∫
s

δry (19)

Because the increments in the driving Brownian motion over the time interval [s,min(t, u)] will be the same for
short rates rt and ru and therefore the two short rates are positively correlated. The equation for the covariance
between the short rate at time t and the short rate at time u is...

Covariance

[
rt ru

]
= E

[
rt ru

]
− E

[
rt

]
E
[
ru

]
(20)

Using Equation (13) above we can write the equations for the short rate at time t and at time u as...

rt = µt + Exp

{
− λ t

}
σ

t∫
s

Exp

{
λx

}
δWx ...and... ru = µu + Exp

{
− λu

}
σ

u∫
s

Exp

{
λ y

}
δWy (21)

Per covariance Equation (20) above we need the expectation of the product of the two short rates rt and ru. Using
Equation (21) above this expectation in equation form is...

E
[
rt ru

]
= E

[(
µt + Exp

{
− λ t

}
σ

t∫
s

Exp

{
λx

}
δWx

)(
µu + Exp

{
− λu

}
σ

u∫
s

Exp

{
λ y

}
δWy

)]
(22)

Given that the expected value of the product of δWx and δWy is zero (see Appendix Equation (38) below) we can
ignore those cross products and rewrite Equation (22) above as...

E
[
rt ru

]
= µt µu + σ2 Exp

{
− λ (t+ u)

}
E
[ t∫

s

u∫
s

Exp

{
λ (x+ y)

}
δWxδWy

]
(23)
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Because the cross product δWx and δWy is equal to zero we can rewrite Equation (23) above as (note that t ∧ u
means that you take the minimum of t and u)...

E
[
rt ru

]
= µt µu + σ2 Exp

{
− λ (t+ u)

}
E
[ t∧u∫

s

t∧u∫
s

Exp

{
λ (x+ y)

}
δWxδWy

]
(24)

Using Appendix Equation (47) below the solution to Equation (24) above is...

E
[
rt ru

]
= µt µu +

1

2
σ2 Exp

{
− λ (t+ u)

}(
Exp

{
2λ (t ∧ u)

}
− Exp

{
2λ s

})
λ−1 (25)

Using Equations (14) and (25) above we can write the covariance of the random short rates at time t and u given
the known short rate at time s as...

Covariance (rt ru) = E
[
rt ru

]
− E

[
rt

]
E
[
ru

]
= µt µu +

1

2
σ2 Exp

{
− λ (t+ u)

}(
Exp

{
2λ (t ∧ u)

}
− Exp

{
2λ s

})
λ−1 − µt µu

=
1

2
σ2 Exp

{
− λ (t+ u)

}(
Exp

{
2λ (t ∧ u)

}
− Exp

{
2λ s

})
λ−1 (26)

Simulating The Short Rate

Given that rt is the normally-distributed short rate at time t, m is the short rate mean per Equation (17) above,
and v is the short rate variance per Equation (18) above, we can define the normalized random variable Z to be
the following equation...

rt −m√
v

= Z ...such that... Z ∼ N
[
0, 1

]
(27)

By rearranging Equation (27) above the simulated value of the short rate at some future time t given the short rate
at time s < t is...

rt = m+
√
v Z ...where... Z ∼ N

[
0, 1

]
(28)

Note that one of the potential issues with the Vasicek interest rate process is that you can get negative rates. If
we define the function CNDF(value) to be the cumuative distribution function of a normally-distributed random
variable with mean zero and variance and use Equation (28) above then the probability of pulling a negative rate
from the rate distribution is...

Prob

[
rt < 0

]
= CNDF(Z) ...because... if rt = 0 then Z = − mean√

variance
(29)

When Short-Term Rate Is Random

In the equations above the equation for the random short rate at time t (see Equation (11) above) assumes that
the short-rate at time s was known (i.e. not random). What happens to that equation when from the perspective
of time zero the short-rate at time s > 0 is not known and therefore is a random variable? Using Equation (11)
above the equation for the short rate at time t given the short rate at time s is...

rt = r∞ + Exp

{
− λ (t− s)

}
(rs − r∞) + Exp

{
− λ t

}
σ

t∫
s

Exp

{
λu

}
δWu (30)

If the short rate rs in Equation (30) above is a random variable (is not a given) then the equation for the random
short rate at time s given the known short-rate at time zero is...

rs = r∞ + Exp

{
− λ s

}
(r0 − r∞) + Exp

{
− λ s

}
σ

s∫
0

Exp

{
λ v

}
δWv (31)
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Using Appendix Equation (48) below the equation for the random short rate at time t (Equation (30) above)
given the random short rate at time s (Equation (31) above) is...

= r∞ + Exp

{
− λ t

}
(r0 − r∞) + Exp

{
− λ t

}
σ

t∫
0

Exp

{
λw

}
δWw (32)

Answers To Our Hypothetical Problem

Question 1: Graph the short rate curve (mean and variance) over the time interval [0, 10] - Uses Equations (17)
and (18) above.

Question 2: What is the short rate mean and variance at the end of years 1 and 3? - Uses Equations (17) and
(18) above.

The expected short rate at the end of year 1 is...

mean = 0.09 + Exp

{
− 0.35× (1− 0)

}(
0.04− 0.09

)
= 5.477%

variance =
1

2
× 0.032 ×

(
1− Exp

{
− 2× 0.35× (1− 0)

})
× 0.35−1 = 0.065% (33)

The expected short rate at the end of year 3 is...

mean = 0.09 + Exp

{
− 0.35× (3− 0)

}(
0.04− 0.09

)
= 7.250%

variance =
1

2
× 0.032 ×

(
1− Exp

{
− 2× 0.35× (3− 0)

})
× 0.35−1 = 0.113% (34)

Question 3: What is the correlation between the random short rates at the end of years 1 and 3?

The covariance between the short rates at the end of year 1 and year 3 is... (uses Equation (26) above)

Cov (r1 r3) =
1

2
× 0.032 × Exp

{
− 0.35× (1 + 3)

}
×
(

Exp

{
2× 0.35× (1 ∧ 3)

}
− Exp

{
2× 0.35× 0

})
× 0.35−1

= 0.00032 (35)

Using the variance of the short rate at the end of years 1 and 3 as calculated in Question 2 above, the correlation
between the random short rate at the end of year 1 and year 3 is...

Correl (r1 r3) =
CoVar (r1r3)

Sdev r1 × Sdev r3
=

0.00032√
0.00065×

√
0.00113

= 0.38 (36)

Question 4: What is the probability that the random short rate at the end of year 3 will be negative?

Using Equations (29) and (34) above the probability of a negative rate is...

Prob

[
r3 < 0

]
= CNDF

(
− mean√

variance

)
= CNDF

(
− 0.07250√

0.00113

)
= 1.55% (37)
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Appendix

A. Note the following expectations applicable to the change in the Brownian motion Wu over the infinitesimally
small time interval [u, u+ δu]...

E
[
δWu

]
= 0 ...and... E

[
δW 2

u

]
= δu ...and... E

[
δWu δWv

]
= 0 (38)

B. We want to find the expected value of the following equation...

E
[( t∫

s

Exp

{
λu

}
δWu

)2 ]
= E

[ t∫
s

t∫
s

Exp

{
λu

}
δWu Exp

{
λ v

}
δWv

]
= E

[ t∫
s

t∫
s

Exp

{
λ (u+ v)

}
δWu δWv

]
(39)

Per Appendix Equation (38) above, the product of δWu and δWv is zero when u 6= v and therefore we need only
consider cases where u = v. We can rewrite Appendix Equation (39) above as...

E
[( t∫

s

Exp

{
λu

}
δWu

)2 ]
= E

[ t∫
s

Exp

{
λ 2u

}
δW 2

u

]
(40)

Per Appendix Equation (38) above, the square of δWu = δu. We can rewrite Appendix Equation (40) above as...

E
[( t∫

s

Exp

{
λu

}
δWu

)2 ]
=

t∫
s

Exp

{
λ 2u

}
E
[
δW 2

u

]
=

t∫
s

Exp

{
λ 2u

}
δu (41)

The solution to Equation (41) is...

E
[( t∫

s

Exp

{
λu

}
δWu

)2 ]
=

1

2

(
Exp

{
2λ t

}
− Exp

{
2λ s

})
λ−1 (42)

C. We want to solve the following equation...

I = Exp

{
− 2λ t

}
σ2 E

[ t∫
s

t∫
s

Exp

{
λ (u+ v)

}
δWu δWv

]
(43)

Using Appendix Equation (42) above we can rewrite Equation (43) above as...

I =
1

2
σ2 Exp

{
− 2λ t

}(
Exp

{
2λ t

}
− Exp

{
2λ s

})
λ−1 (44)

The solution to Equation (44) is...

I =
1

2
σ2

(
1− Exp

{
− 2λ (t− s)

})
λ−1 (45)

D. We want to solve the following equation...

I = Exp

{
− λ (y + z)

}
σ2 E

[ y∧z∫
x

z∧y∫
x

Exp

{
λ (u+ v)

}
δWu δWv

]
(46)

Using Appendix Equation (42) above we can rewrite Equation (43) above as...

I =
1

2
σ2 Exp

{
− λ (y + z)

}(
Exp

{
2λ (y ∧ z)

}
− Exp

{
2λx

})
λ−1 (47)
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E. After substituting the random variable rs in Equation (31) into short rate Equation (30) above that equation
becomes...

rt = r∞ + Exp

{
− λ (t− s)

}(
r∞ + Exp

{
− λ s

}
(r0 − r∞) + Exp

{
− λ s

}
σ

s∫
0

Exp

{
λ v

}
δWv − r∞

)

+ Exp

{
− λ t

}
σ

t∫
s

Exp

{
λu

}
δWu

= r∞ + Exp

{
− λ t

}
Exp

{
λ s

}(
Exp

{
− λ s

}
(r0 − r∞) + Exp

{
− λ s

}
σ

s∫
0

Exp

{
λ v

}
δWv

)

+ Exp

{
− λ t

}
σ

t∫
s

Exp

{
λu

}
δWu

= r∞ + Exp

{
− λ t

}
(r0 − r∞) + Exp

{
− λ t

}
σ

s∫
0

Exp

{
λ v

}
δWv

)
+ Exp

{
− λ t

}
σ

t∫
s

Exp

{
λu

}
δWu

= r∞ + Exp

{
− λ t

}
(r0 − r∞) + Exp

{
− λ t

}
σ

t∫
0

Exp

{
λw

}
δWw (48)
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